GRE
GRE
GRE Verbal Practice
GRE Word list
Best Books for GRE
Colleges: GRE not required
GRE Math Test -1
TOEFL
TOEFL
Free TOEFL Tests
Sample TOEFL Test - 1
Best Books for TOEFL
Test Prep
IELTS
ACT
SAT
MCAT
LSAT
GMAT
TOEIC
Duolingo
Advanced Placement
More Tests
Best Colleges & Programs
Top Colleges and Degree Courses
Top Engineering Schools
Top MBA Programs
Top Psychology Programs
Top Economics Schools
Top Nursing Programs
Biology and Life Sciences
Fine Arts
Law
Healthcare
Top Majors
Certificate Programs
High Paying Certificate courses!
ABCTE Certification
ARRT Certification
CPA - Certified Public Accountant
Lifeguard Certifications
Life Coach Certification
Personal Trainer Certifications
PHR Certification
CDA Certification
Study Abroad
Destinations
Study in US
Study in Canada
Study in UK
Study in Australia
Study in New Zealand
Study in Germany
Study in France
Study in Italy
Study in Netherlands
Study in Ireland
Study in Singapore
More countries...
Student Visa
Student Visa: USA
F-1 visa rejected, any options?
Student visa: Canada
Student visa: UK
Student visa: Australia
Student visa: Germany
Student visa: Netherlands
Student Visa: New Zealand
Student visa: France
Student visa: Singapore
Work Visa
Work visa for USA - H1B
Work visa for UK
Work visa for Canada
Work visa for Australia
Work visa for Germany
Work visa for Ireland
Work visa for Singapore
Work visa for Hong Kong
Admissions
Cost of getting a degree
Fall vs Spring
College Application Deadlines
Letter of Intent
Sample Statement of Purpose MS - CS
Sample Statement of Purpose MS - Psychology
What is GPA?
MBA Application Process
US - Credits, Thesis, Semestes?
How to Transfer Credits
Affordable Recommended programs
Prepare for Gradschool Interview
Colleges accepting low GRE scores
Graduate vs Undergraduate
How to Finance your education
Home
/
Tests & Exam
/
TOEFL Test
Reading Comprehension Test 3
"Science Snapshot" By Dan Vergano
Still wondering what all the "God particle" hoopla was all about?
Source
Well, try this out.
The subatomic particle is better known to scientists as the Higgs boson. And after decades of searches, it seems likely the elusive particle has been successfully detected inside an underground tunnel experiment run by the European Organization for Nuclear Research (CERN) outside Geneva. Results "consistent" with the hard-to-detect particle, in the words of CERN chief Rolf Heuer as he announced the discovery July 4, may be the opening act in explaining the structure of the sky over our heads.
A source of heartburn to serious science types now, the "God particle" nickname for the Higgs boson comes from the title of a 1993 book by Nobel-prize winner Leon Lederman, who was trying to play up the elusive nature of the particle.
For a glimpse of one implication of this latest big news in science, climb aboard a time machine, says physicist Jonathan Feng of the University of California-Irvine, and visit the birth of the universe 13.7 billion years ago.
"Simply take the universe backwards, to an early time when the cosmos was a hot mass, brand new, filled with particles that each weighed perhaps 500 times as much as a proton," says Feng (protons are positively charged subatomic particles inside atoms). "Now play the film forward. Just let it go until it expands to fill with today's stars and galaxies, and what you find is that it contains amounts of that particle that are just right to be 'dark matter' filling the universe."
Terrific, you might say, but what's so wonderful about dark matter?
Dark matter is basically a bunch of stuff, likely exotic physics particles, that we can't really see (hence its name) but we know is out there. Astronomers realized a few decades ago that galaxies should be spinning faster than they are if the stars within them were the only things providing the gravity that holds them together. So, their theories go, there must be something - dark matter - slowing them down.
It turns out that stars are just the shiny hubcaps on each galaxy, outweighed by a factor of nearly 6-to-1 by all the dark matter out there. Dark matter even pulls itself together through gravity. For example, the journal Nature last week reported that a dark matter cloud gravitationally connects two clusters of galaxies, called Abell 222 and Abell 223. This cloudy filament stretches over 11 million light years between the clusters and weighs 98 trillion times as much as our sun.
That's a lot of dark matter. So is the Higgs boson this elusive dark matter particle (or particles) then?
Nope. But it may be a key to dark matter, physicists say.
The Higgs boson is the physics particle that gives other particles their mass. Essentially it interacts with them to increase their resistance to being moved faster, which we can measure as mass.
Because the Higgs boson's basic job is to interact with other physics particles to give them mass, "the Higgs boson can interact with dark matter very easily," Caltech's Sean Carroll explained on NPR's Science Friday show after the recent "God particle" announcement. "Dark matter is one of the most exciting implications of this discovery," Carroll said.
How? That brings us back to Feng's rerun of the universe. "Having a particle out there theoretically just a little heavier than the Higgs boson, which interacts with it, is waving a red cape in front of the eyes of physicists," Feng says. "There is a lot more data coming from CERN ahead that may reveal the dark matter particle."
Dark matter particles that theoretically could be detected at CERN's underground Large Hadron Collider are envisioned by a theory called "focus point supersymmetry." Supersymmetry theories predict that the already- discovered particles that comprise everyday matter have much-heavier "super" counterparts awaiting detection (for example, the already detected "quarks" inside protons would have an undetected super-partner called "squarks").Focus point supersymmetry predicts both a Higgs boson with a weight similar to the one reported on July 4, about 130 times as heavy as a proton, and dark matter particles.
"In fact, the simplest focus point models predict that dark matter particles should be seen not long from now in the underground detectors that are searching for them," if the CERN lab indeed found a Higgs boson, Feng says. "So there are really two predictions - dark matter should be seen in underground detectors, and new particles should be seen at the Large Hadron Collider in the next few years." Some of the new superpartner particles theoretically weigh in the detectable range for the underground experiment.
Finding these new particles would crack the dark matter mystery and would indicate that even heavier super- particles are out there, ones that someday could allow physicists to explain gravity the same way they can explain electromagnetic and nuclear forces, a goal of cosmologists for nearly a century.
"The simplest outcome is that we'll be totally wrong and it won't find anything," Feng says. "But we are at a point in physics where we can talk about theories and experiments coming together very closely thanks to what is now happening, and we couldn't do that for a long time before ."
When do the next big results come from CERN that might offer more answers? Likely in December. So, Feng says, physicists celebrated one holiday, July 4, with new particle results and hopefully Christmas will bring them hints of new presents. "That would be excellent, we couldn't ask for better gifts," he say
1. The word "hoopla" in paragraph 1 is closest in meaning to
A) commotion
B) public outrage
C) propaganda
D) insanity
2. What tone does the author demonstrate in paragraph 3 when he quotes scientists use of "consistent" as a description for their experiments?
A) skepticism
B) awe
C) fear
D) utter belief
3. Why is the Higgs boson nicknamed the "God Particle"
A) Its potential power is so great it could have universal influence
B) It has been a subject of religious study
C) Proving its existence has been as elusive to scientists as proving the existence of god
D) It is believed that the particle has some mystical powers
4. What is the purpose of the time machine in the article?
A) To suggest that we will likely never know the true history of the particle until a working time machine is invented
B) To demonstrate that we must understand the origins of the Higgs boson particle to accurately understand its implications today
C) The particle does not have any viable evidence of existing before the galaxies were formed
D) The life of the particle can only be explained using a linear timeline
5. According to the article, all are true of dark matter EXCEPT
A) Its gravitational force slows the spinning of galaxies
B) The ratio of dark matter to stars is 6 to 1
C) It is comprised most likely of physics particles, though it is invisible
D) Dark matter is named so because of its destructive, sinister force
6. What is the key function of the Higgs boson particle?
A) To increase the appearance of dark matter on scientific screening tools
B) To collide with other particles to produce energy
C) It proves the existence of god
D) It gives other particles measurable mass
7. In paragraph 14 the phrase "waving a red cape" is closest in meaning to
A) giving up
B) raising awareness among scientists
C) provoking conflict
D) encouraging scientists to avoid the topic
8. What is the most accurate definition for "focus point supersymmetry"?
A) The theory that particles all have a point of energy within them that is mirrored in others of their kind
B) The theory that particles all have equal balance in their basic structures
C) The theory that particles that have already been discovered have heavier "super" counterparts that are yet to be discovered still
D) The theory that particles can be merged at a particular point in their atomic makeup
9. The phrase "crack the dark matter mystery" in paragraph 17 is closest in meaning to
A) Put a definitive end to all theories involving dark matter
B) Disprove the theories around dark matter while proving other standing theories
C) Separate the theories around dark matter into more specific groupings
D) Solve a problem that has baffled scientists for a very long time
10. What is the most accurate summary for the article?
A) The discovery of Higgs boson is a notable step toward learning about dark matter, but it is only one aspect of a larger mystery
B) Focus Point Supersymmetry is the most promising theory for understanding dark matter
C) While dark matter provides an interesting story, it is much more a myth than a phenomenon rooted in actual scientific evidence
D) Higgs boson, the "God Particle," and dark matter are all significant threats to world religions.
TOEFL iBT- 2024-25
TOEFL Test
TOEFL Dates and Fees
TOEFL iBT - Take at Home
TOEFL Essentials
TOEFL Listening Section
TOEFL Reading Section
TOEFL Writing Section
TOEFL Speaking Section
TOEFL Practice Tests
TOEFL Practice Test 1
TOEFL Practice Test 2
TOEFL Practice Test 3
TOEFL Practice Test 4
TOEFL Practice Test 5
TOEFL Practice Test 6
TOEFL Practice Test 7
TOEFL Practice Test 8
TOEFL Practice Test 9
TOEFL Practice Test 10
TOEFL Listening Test 1
TOEFL Listening Test 2
TOEFL Prep - Tips
TOEFL Listening section Tips
Best TOEFL Books
7 Best TOEFL Apps
10 TOEFL Tips
TOEFL FAQs
Cracking TOEFL and GRE
TOEFL Scores
How to convert TOEFL Score?
How to get 100+ in TOEFL iBT
TOEFL Requirements for Top Universities/Colleges
Low TOEFL score - Options?
IELTS vs TOEFL
IELTS vs TOEFL
IELTS/TOEFL score comparison/conversion
Subscribe to our newsletter